

Floodplain Restoration on the UMR

U.S. Army Corps of Engineers
St. Paul District

The UMRS Environmental Management Program

UPPER MISSISSIPPI RIVER ENVIRONMENTAL MANAGEMENT PROGRAM

In the beginning . . .

Backwaters

Lock and Dam No. 10 Guttenberg, Iowa

Sedimentation

Pool 8 Islands, WI

Island Erosion

Geomorphic Response

St. Paul District

Island Design

Pool 8 Islands Phase I Stage 1

Pool 8 Islands Phase I

Pool 8 Islands Phase II

1999 Lower Pool 8 Waterfowl Ground Surveys - Puddle Ducks

1999 Lower Pool 8 Waterfowl Ground Surveys - Tundra Swans

Island Layout

PAST	PRESENT
Reduce Sediment Load To Backwaters	Partially Restore Riverine Conditions. Qc >> Qf for Bankfull Conditions.
Reduce Wave Action	Wind Fetch < 4000' in Shallow Areas (< 4' deep)
Waterfowl & Fish Habitat	Fish: v < .01 fps, d > 4'
	Ducks: Create Visual Barriers & Mudflats

Pool 8, Phase 3 Existing Conditions Velocity

Pool 8, Phase 3 Proposed Conditions Velocity

Pool 8, Phase 3 Layout

St. Paul District

Island Cross Section

Island Cross-Section Changes

LAKE ONALASKA, 1989

-POOL 8 PHASE III, 2001

Topsoil

PAST	PRESENT
Percentage of fines > 40	Percent Fines Between 40 and 70. Sand is Required to Provide Optimum Substrate for Plants.
Vegetation Stabilizes Earth Structure During Floods	Vegetation and Topsoil With Cohesive Properties Stabilizes Earth Structure During Floods

Polander Lake, 2001

St. Paul District

Pool 8, Phase II, 2001

St. Paul District

Shoreline Stabilization

Type of Stabilization

PAST	PRESENT
RIPRAP	BIOTECHNICAL = INERT MATERIAL LIKE ROCK AND LOGS COMBINED WITH VEGETATION

Riprap

Biotechnical: Rock Groins

Biotechnical:Off-Shore Rock Mound

And Then Someone Said "This is too Stable"

"We Would Like Mudflats, Sandbars, and Beaches"

Shorelines

POOL 8, PHASE II SHORELINE WOODY VEGETATION AQUATIC GRASSES POOL 8, PHASE III SHORELINE TRANSITION WOODY AQUATIC ZONE OR BEACH VEGETATION GRASSES

Designing for Controlled Erosion and Stable Water Levels

SHORELINES

POOL 8, PHASE III MUDFLATS IN SHELTERED AREA

Pool 8, Phase III, Groins, 2004

Pool 8 Phase III, 2004

St. Paul District

Conclusion

- Habitat Project Engineering Must Evolve as River Science (Hydrology, Geomorphology, Biology) Evolve.
- Lessons Learned Need to be Incorporated into Future Designs.
- The Large River Habitat Project Engineering Manual: Where is it?

Acknowledgements

USACE – St. Paul District

Jon Hendrickson, Hydraulic Engineer

Don Powell, Project Manager

Aaron Buesing, Hydraulic Engineer

The End

